skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Houlton, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 25, 2026
  2. Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions. 
    more » « less
  3. Abstract Soils store more carbon than other terrestrial ecosystems 1,2 . How soil organic carbon (SOC) forms and persists remains uncertain 1,3 , which makes it challenging to understand how it will respond to climatic change 3,4 . It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss 5–7 . Although microorganisms affect the accumulation and loss of soil organic matter through many pathways 4,6,8–11 , microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes 12,13 . Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved 7,14,15 . Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate. 
    more » « less
  4. Abstract Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for (i) world hunger; (ii) soil, air, and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation. 
    more » « less